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Problem 6.32. (a) Show that if θ is the standard angle function on R2 measured in the
counterclockwise direction, then dθ is positive on the circle S1.

To show this is positive on S1, we need to show that dr ∧ π∗dθ is positive on Rn−{0}
where π : R2 − {0} → S1 is a deformation retraction. Let π(r, θ) = (1, θ) be the
deformation-retraction. Then we have

π∗dθ = (1 ◦ π)dπθ

= dθ

So, we are considering now dr ∧ dθ on R2 − {0} which is in the orientation class of R2

so is positive. Thus dθ is positive on S1.

(b) Show that if φ and θ are the spherical coordinates on R3 as in Figure 6.7 then dφ∧ dθ
is positive on the 2-sphere S2.

We need to consider dr ∧ pi∗(dφ ∧ dθ). Let π : R3 − {0} → S2 be the deformation
retraction given by π(r, θ, φ) = (1, θ, φ). Then we have

π∗(dφ ∧ dθ) = (1 ◦ π)dπθ ∧ dπφ
= dθ ∧ dφ

So, we are considering dr∧dφ∧dθ which is in the orientation class of R3 so is positive,
so dφ ∧ dθ is also positive.

Problem 6.36. There exist 1-forms ξα on Uα such that

1

2π
dϕαβ = ξβ − ξα

Let ξα = 1
2π

∑
γ ργdϕγα where {ργ} is a partition of unity subordinate to {Uγ}. Now, we

compute

ξβ − ξα =
1

2π

∑
γ

ργdϕγβ −
1

2π

∑
γ

ργdϕγα

=
1

2π

∑
γ

ργ(dϕγβ − dϕγα)
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Now for each γ, we know that ϕγα + ϕαβ − ϕγβ = 2πnγ where nγ ∈ Z. So, we have that
dϕγα + dϕαβ − dϕγβ = 0 since 2πnγ is a constant function. Thus, we have that dϕαβ =
dϕγβ − dϕγα and so

ξβ − ξα =
1

2π

∑
γ

ργ(dϕαβ)

=
1

2π
(dϕαβ)

∑
γ

ργ

=
1

2π
dϕαβ

Problem 6.43. Let π : E → M be an oriented rank 2 bundle. As we saw in the proof of
the Thom isomorphism, wedging with the Thom class is an isomorphism ∧Φ : H∗(M) →
H∗+2
cv (E). Therefore every cohomology class on E is the wedge product of Φ with the pullback

of a cohomology class on M . Find the class u on M such that

Φ2 = Φ ∧ π∗u in H∗cv(E)

Rearranging the given equation, we get that

Φ2 − Φ ∧ π∗u = Φ ∧ (Φ− π∗u) = 0

By the Thom isomorphism, there is a unique class σ ∈ H∗(E) so that Φ∧σ = 0. Since σ = 0
certainly works, we can conlude that Φ− π∗u = 0 for a unique class u.
Let e be the Euler class of E. We claim that u = e is the needed cohomology class. Using
that π∗e = −dψ and the formula for Φ given in 6.40, we compute

Φ− π∗e = d(ρ(r) ∧ ψ)−−dψ
= d(ρ(r) ∧ ψ + ψ)

= d((ρ(r) + 1) ∧ ψ)

Near 0, ρ(r) = −1, so (ρ(r) + 1) ∧ ψ will be defined on all of E despite ψ not being defined
near 0. Thus Φ and π∗e differ by a closed form, so they represent the same cohomology class.
Hence, u = e as claimed.

Problem 6.44. The complex projective space CP n is the space of all lines through the
origin in Cn+1, topologized as the quotient of Cn+1 by the equivalence relation

z ∼ λz for z ∈ Cn+1, λ ∈ C×

Let z0, . . . , zn be the complex coordinates on Cn+1. These give a set of homogeneous coor-
dinates [z0, . . . , zn] on CP n determined up to multiplication by λ ∈ C×. Define Ui to be the
open subset of CP n given by zi 6= 0. {U0, . . . , Un} is called the standard open cover of CP n.
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(a) Show that CP n is a manifold.

For each i, let fi : Ui → Cn be given by fi([z0, . . . , zn]) = ( z0
zi
, . . . , zi−1

zi
, zi+1

zi
, . . . , zn

zi
). To

see this is well-defined, notice that

fi([λz0, . . . , λzn]) =

(
λz0
λzi

, . . . ,
λzi−1
λzi

,
λzi+1

λzi
, . . . ,

λzn
λzi

)
=

(
z0
zi
, . . . ,

zi−1
zi

,
zi+1

zi
, . . . ,

zn
zi

)
For each i, we also have the inverse map gi : Cn → Ui given by gi(w1, . . . , wn) =
(w1, . . . , wi−1, 1, wi+1, . . . , wn). Both fi and gi are continuous, so we have the needed
homeomorphisms.

(b) Find the transition functions of the normal bundle NCP 1/CP 2 relative to the standard
open cover of CP 1.

The normal bundle of CP 1 in CP 2 is given by π : CP 2 → CP 1 where π([z0, z1, z2]) =
[z0, z1]. The standard open cover of CP 1 has only two elements U0 and U1, so there is
one transition function g01. Each element of the open cover has a corresponding map.
For U0, the fiber is {[z0, z1, z2] : z0 6= 0} and the map is φ0([z0, z1, z2]) = ([z0, z1],

z2
z0

).
Similarly the fiber for U1 is {[z0, z1, z2] : z1 6= 0} and the map is φ1([z0, z1, z2]) =
([z0, z1],

z2
z1

). Because in each case we scaled the non-projective output by the nonzero
component, the value of z2 is well-defined and we get an isomorphism to Ui × C.

Now on U0 ∩ U1, we have the map φ0 ◦ φ−11 . It is given by

(φ0 ◦ φ−11 )([a, b], c) = φ0([a, b], bc)

= ([a, b], bc
a

)

So, the map g01 : U0 ∩ U1 → GL1(C) is given by [z0, z1] 7→ (z 7→ z1
z0
z).

Problem 6.45. On the complex projective space CP n there is a tautological line bundle S,
called the universal subbundle; it is the subbundle of the product bundle CP n×Cn+1 given
by

{(`, z) : z ∈ `}

Above each point ` in CP n, the fiber of S is the line represented by `. Find the transition
functions of the universal subbundle S of CP 1 relative to the standard open cover and com-
pute its Euler class.

The standard open cover of CP 1 has two elements U0 and U1, each with a correspond-
ing map. For U0, the fiber in the universal subbundle is {([1, z], λ(1, z)) : z, λ ∈ C} and
the map is φ0([1, z], λ(1, z)) = ([1, z], λ). For U1, the fiber in the universal subbundle is
{([z, 1], λ(z, 1)) : z, λ ∈ C} and the map is φ1([z, 1], λ(z, 1)) = ([z, 1], λ).
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Now on U0 ∩ U1 we have the map φ0 ◦ φ−11 given by

(φ0 ◦ φ−11 )([z0, z1], λ) = (φ0 ◦ φ−11 )([ z0
z1
, 1], λ)

= φ0([
z0
z1
, 1], λ( z0

z1
, 1))

= φ0([1,
z1
z0

], λz0
z1

(1, z1
z0

))

= ([1, z1
z0

], λz0
z1

)

= ([z0, z1],
λz0
z1

)

So the map g01 : U0 ∩ U1 → GL1(C) is given by [z0, z1] 7→ (z 7→ z0
z1
z).

For the Euler class, we follow Example 6.44.1. Let z = z1
z0

be the coordinate of U0, which we

can identify with C. Let w = z0
z1

= 1
z

be the coordinate of U1 which we again identify with

C. Then, g01 = 1
z

= w on U0 ∩ U1. Now by 6.38, the Euler class of S is given by

e(N) =
−1

2πi
d (ρ0d log g01) on U1

=
−1

2πi
d (ρ0d logw)

where ρ0 is 1 in a neighborhood of the origin and 0 in a neighborhood of infinity in the
complex w-plane U1

∼= C. Let Ar be an annulus centered at the origin whose outer circle
C is sufficiently large to contain the support of ρ0 and whose inner circle Br has radius r.
Orient C counterclockwise and Br clockwise. Now, we have∫

CP 1

e(N) =
−1

2πi

∫
C
dρ0d logw

To compute the right integral, consider∫
C
d(ρ0dw/w) = lim

r→0

∫
Ar

d(ρ0dw/w)

= lim
r→0

∫
C

ρ0dw/w +

∫
Br

dw/w by Stokes’ theorem

= lim
r→0

∫
Br

dw/w

= −2πi

In the third equality, we used that ρ0 is supported inside of C, so is 0 on C. In the fourth
equality, we get a minus sign because Br is oriented clockwise. So, we have that∫

CP 1

e(N) =
−1

2πi
(−2πi) = 1

So the Euler class is a form with total integral over C equal to 1.
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Problem 6.46. Let Sn be the unit sphere in Rn+1 and i the antipodal map on Sn:

i : (x1, . . . , xn+1)→ (−x1, . . . ,−xn+1)

The real projective space RP n is the quotient of Sn by the equivalence relation x ∼ i(x).

(a) An invariant form on Sn is a form ω such that i∗ω = ω. The vector space of invariant
forms on Sn, denoted Ω∗(Sn)I is a differential complex, and so the invariant cohomol-
ogy H∗(Sn)I of Sn is defined. Show that H∗(RP n) ∼= H∗(Sn)I .

Let π : Sn → RP n be the quotient by x ∼ i(x). This gives an isomorphism on the
level of forms. Suppose that ω is an invariant form on Sn. Then i∗ω = ω and π(ω)
will be well-defined on the quotient of Sn by the antipodal map i. On the other hand,
if τ is a form on RP n in coordinates x1, . . . , xn, then 1

2
(τ + i∗τ) is a form on Sn in

(non-projective) coordinates x1, . . . , xn and is invariant since

1
2
i∗(τ + i∗τ) = 1

2
(i∗τ + τ)

Now when we send this form to RP n by identifying x ∼ i(x), we will get the form
1
2
(τ + τ) = τ on RP n back.

To see this is an isomorphism in cohomology, we need it to commute with d. Suppose
that τ is a form in RP n. Lifting to Sn, we get the form 1

2
(τ + i∗τ). Applying d, we get

1
2
d(τ + i∗τ). On the other hand, we can compute dτ in RP n and then lift to Sn. This

gives 1
2
(dτ + i∗dτ). Since i∗ commutes with d, this is 1

2
d(τ + i∗τ). Hence we have an

isomorphism in cohomology.

(b) Show that the natural map H∗(Sn)I → H∗(Sn) is injective.

Suppose that σ and τ are invariant forms on Sn and that they map to the same element
of Ω∗(Sn). That is, they are the same form when we forget the property that they
are invariant. No information about σ and τ is lost when we no longer label them as
invariant forms, so they are equal as invariant forms as well. Hence the map is injective
at the level of forms.

To see it is injective also on cohomology, suppose that ω is an invariant form on Sn

and [ω] = 0, so ω = dτ for some (not necessarily invariant) form τ on Sn. Then we
have ω = i∗ω = i∗dτ = di∗τ and so we have that ω = 1

2
(dτ +di∗τ) = d1

2
(τ + i∗τ). Now,

we compute

i∗[1
2
(τ + i∗τ)] = 1

2
(i∗τ + i∗i∗τ)

= 1
2
(i∗τ + τ)

So ω = dσ where σ = 1
2
(τ + i∗τ) is in fact an invariant form on Sn. Thus the map is

injective on cohomology.
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(c) Give Sn its standard orientation. Show that the antipodal map i : Sn → Sn is
orientation-preserving for n odd and orientation-reversing for n even.

Since Sn inherits its orientation from Rn+1, it suffices to consider the effect of i on the
orientation of Rn+1. So, we need to compute the Jacobian determinant of i. That is,
we need to compute det(∂(−xi)

∂xi
). This (n+ 1)× (n+ 1) matrix has −1 on the diagonal

and 0 elsewhere, so has value (−1)n+1.

When n is odd, this determinant is positive and so orientation preserving. When n is
even, this determinant is negative and so orientation reversing.

(d) Show that the de Rham cohomology of RP n is

Hq(RP n) =


R q = 0

0 0 < q < n

R q = n odd

0 q = n even

We have an isomorphism betweenHq(Sn)I andHq(RP n) and an injection fromHq(Sn)I

to Hq(Sn). Now, we know that

Hq(Sn) =


R q = 0

0 0 < q < n

R q = n

So since we have an injection fromHq(RP n) toHq(Sn), we can conclude thatHq(RP n) =
0 for 0 < q < n. Since RP n is connected, we have that H0(RP n) = R. Now when
q = n, let σ be the generator of Hn(Sn). Since i has Jacobian (−1)n+1, we have that
i∗σ = (−1)n+1σ. In the case of n odd, σ is an invariant form, and so the injection is in
fact an isomorphism and Hn(RP n) = R. In the case of n even, σ is not an invariant
form and the injection is the 0 map, hence Hn(RP n) = 0.
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